本实验模拟企业网络场景,R1为企业总部的网关设备,并且内部有一台服务器,R3连接着企业分公司网关设备,R2为公网ISP设备。一般情况下,运营商只会维护自身的公网路由信息,而不会维护企业内部私网的路由信息,即运营商设备上的路由表中不会出现任何企业内部私网的路由条目。通过配置GRE实现公司总部和分部间私网路由信息的透传及数据通信。
[R1]ip route-static 0.0.0.0 0.0.0.0 10.1.12.2
[R3]ip route-static 0.0.0.0 0.0.0.0 10.1.23.2
可以观察到,跨越了互联网的两个私网网段之间默认是无法直接通信的。此时可以通过GRE协议来实现跨越了互联网的两个私网网段之间的通信。
配置R1、R3的GRE tunnel
在路由器R1、R3上配置GRE Tunnel,使用命令interface tunnel创建隧道接口,指定隧道模式为GRE。配置R1、R3 Tunnel接口的源地址为其S 1/0/0接口IP地址,目的地址为R1/R3的S 1/0/0接口IP地址。还要使用命令ip address配置Tunnel接口的IP地址,注意要在同一网段。
测试R1与目的地址的连通性
检查R1、R3隧道接口状态
检查R1、R3路由表
测试PC1与Server1的连通性,发现还不能联通
配置R1、R3 RIPv2协议
检查R1、R3的RIP邻居
检查R1、R3路由表
测试PC1和Server1的连通性,可以看到已经联通
查看R2的路由表
]]>R2、R3、R4各添加Loopback0 接口
10.123.x.x
//配置R2,激活OSPF
[R2]ospf 1 router-id 10.123.2.2
[R2-ospf-1] area 0.0.0.0
[R2-ospf-1-area-0.0.0.0] network 10.123.2.2 0.0.0.0
[R2-ospf-1-area-0.0.0.0] network 10.123.23.2 0.0.0.0
[R2-ospf-1-area-0.0.0.0] quit
[R2-ospf-1] quit
//配置R3.激活OSPF
[R3]ospf 1 router-id 10.123.3.3
[R3-ospf-1] area 0.0.0.0
[R3-ospf-1-area-0.0.0.0] network 10.123.3.3 0.0.0.0
[R3-ospf-1-area-0.0.0.0] network 10.123.23.3 0.0.0.0
[R3-ospf-1-area-0.0.0.0] network 10.123.34.3 0.0.0.0
[R3-ospf-1-area-0.0.0.0] quit
[R3-ospf-1] quit
//配置R4,激活OSPF
[R4]ospf 1 router-id 10.123.4.4
[R4-ospf-1] area 0.0.0.0
[R4-ospf-1-area-0.0.0.0] network 10.123.4.4 0.0.0.0
[R4-ospf-1-area-0.0.0.0] network 10.123.34.4 0.0.0.0
[R4-ospf-1-area-0.0.0.0] quit
[R4-ospf-1] quit
在R3查看ospf的邻居信息
查看OSPF路由表
//配置R1
[R1]bgp 100
[R1-bgp] router-id 10.123.1.1
[R1-bgp] peer 10.123.12.2 as 64512
//配置R2
[R2]bgp 64512
[R2-bgp] router-id 10.123.2.2
[R2-bgp] peer 10.123.3.3 as-number 64512
[R2-bgp] peer 10.123.3.3 connect-interface LoopBack0
[R2-bgp] peer 10.123.3.3 next-hop-local
[R2-bgp] peer 10.123.12.1 as-number 100
//配置R3
[R3]bgp 64512
[R3-bgp] router-id 10.123.3.3
[R3-bgp] peer 10.123.2.2 as-number 64512
[R3-bgp] peer 10.123.2.2 connect-interface LoopBack0
[R3-bgp] peer 10.123.4.4 as-number 64512
[R3-bgp] peer 10.123.4.4 connect-interface LoopBack0
//配置R4
[R4]bgp 64512
[R4-bgp] router-id 10.123.4.4
[R4-bgp] peer 10.123.3.3 as-number 64512
[R4-bgp] peer 10.123.3.3 connect-interface LoopBack0
[R4-bgp] peer 10.123.3.3 next-hop-local
[R4-bgp] peer 10.123.45.5 as-number 200
//配置R5
[R5]bgp 200
[R5-bgp] router-id 10.123.5.5
[R5-bgp] peer 10.123.45.4 as 64512
//R1
[R1]bgp 100
[R1-bgp] network 172.16.1.0 24
[R1-bgp] network 172.16.2.0 24
[R1-bgp] network 172.16.3.0 24
[R1-bgp] network 172.16.4.0 24
//R5
[R5]bgp 200
[R5-bgp] network 172.16.1.0 24
[R5-bgp] network 172.16.2.0 24
[R5-bgp] network 172.16.3.0 24
[R5-bgp] network 172.16.4.0 24
//创建IP前缀列表1,匹配Loopback1接口路由
[R1]ip ip-prefix 1 permit 172.16.1.0 24 greater-equal 24 less-equal 24
//创建Route-Policy hcip,并创建节点10,在其中调用IP前缀列表1,修改AS_Path属性值
[R1]route-policy hcip permit node 10
[R1-route-policy] if-match ip-prefix 1
[R1-route-policy] apply as-path 300 400 additive
[R1-route-policy] quit
[R1]route-policy hcip permit node 20
//对向BGP对等体R2通告的BGP路由应用Route-Policy
[R1]bgp 100
[R1-bgp] peer 10.0.12.2 route-policy hcip export
//在R1上触发出方向的软复位,刷新对外通告的BGP路由
<R1>refresh bgp all export
在R3上查看BGP路由172.16.1.0/24的信息
此时R3优选R4通告的BGP路由172.16.1.0/24,R2通告的未被优选的原因是AS_Path长度。
创建IP前缀列表1,匹配BGP路由172.16.2.0/24
[R4]ip ip-prefix 1 permit 172.16.2.0 24 greater-equal 24 less-equal 24
创建Route-Policy hcip,并创建节点10,在其中调用IP前缀列表1,修改Local_Preference属性值
[R4]route-policy hcip permit node 10
[R4-route-policy] if-match ip-prefix 1
[R4-route-policy] apply local-preference 200
[R4-route-policy] quit
[R4]route-policy hcip permit node 20
对向BGP对等体R3通告的BGP路由应用Route-Policy
[R4]bgp 64512
[R4-bgp] peer 10.0.3.3 route-policy hcip export
刷新对外通告BGP路由
<R4>refresh bgp all export
在R3上查看BGP路由172.16.2.0/24的明细信息
此时R3优选R4通告的BGP路由172.16.2.0/24,R2通告的BGP路由其Local_Preference值为100,小于R3通告的BGP路由Local_Preference值200,因此R2通告的BGP路由未被优选。
在R2上使得R3优选R5发布的BGP路由172.16.3.0/24
//ip前缀列表1 匹配GBP路由172.16.3.0/24
[R2]ip ip-prefix 1 permit 172.16.3.0 24 greater-equal 24 less-equal 24
创建Route-Policy hcip,并创建节点10,在其中调用IP前缀列表1,修改MED属性值
[R2]route-policy hcip permit node 10
[R2-route-policy] if-match ip-prefix 1
[R2-route-policy] apply cost 200
[R2-route-policy] quit
[R2]route-policy hcip permit node 20
对来自BGP对等体R1的BGP路由应用Route-Policy
[R2]bgp 64512
[R2-bgp] peer 10.0.12.1 route-policy hcip import
在R2刷新接收到的BGP路由
<R2>refresh bgp all import
在R3上配置允许来自不同AS的BGP路由的MED值
[R3]bgp 64512
[R3-bgp] compare-different-as-med
在R3上查看BGP路由172.16.3.0/24的明细信息
R2通告的BGP路由172.16.3.0/24其MED值为200,而R4通告BGP路由MED值为0,R3优选MED值较小的BGP路由,因此R2通告的BGP路由未被优选。
修改R3的路由的pre-value属性的策略,使得R3优选R4通告的BGP路由172.16.4.0/24
创建IP前缀列表1,匹配BGP路由172.16.4.0/24
[R3]ip ip-prefix 1 permit 172.16.4.0 24 greater-equal 24 less-equal 24
创建Route-Policy hcip,并创建节点10,在其中调用IP前缀列表1,修改preferred-value属性值
[R3]route-policy hcip permit node 10
[R3-route-policy] if-match ip-prefix 1
[R3-route-policy] apply preferred-value 300
[R3-route-policy] quit
[R3]route-policy hcip permit node 20
对来自BGP对等体R4的BGP路由应用Route-Policy
[R3]bgp 64512
[R3-bgp] peer 10.123.4.4 route-policy hcip import
R3刷新收到的路由并查看BGP路由172.16.4.0/24的信息
R4通告的BGP路由172.16.3.0/24其preferred-value值为300,而R2通告的preferred-value值为0,R3优选preferred-value值较大的BGP路由,因此R3优选R4通告的BGP路由。
在R1、R5上创建Loopback5接口,将接口路由发布到BGP中,验证Origin属性为IGP的BGP路由优于Origin属性为Incomplete的BGP路由。
R1、R5上创建Loopback5,IP地址为172.16.5.1/24
[R1]interface LoopBack 5
[R1-LoopBack5] ip address 172.16.5.1 24
[R1-LoopBack5] quit
[R5]interface LoopBack 5
[R5-LoopBack5] ip address 172.16.5.1 24
[R5-LoopBack5] quit
在R1、R5上将Loopback5接口路由发布到BGP中,通过network方式
[R1]bgp 100
[R1-bgp] network 172.16.5.0 24
[R5]bgp 200
[R5-bgp] network 172.16.5.0 24
在R3上查看BGP路由表
此时R3上优选R2通告(由R1发布)的BGP路由172.16.5.0/24,此时R2、R4通告的BGP路由Origin属性值都为IGP。
在R1上取消将Loopback5接口路由发布到BGP
创建IP前缀列表2,匹配R1 Loopback5接口路由172.16.5.0/24
[R1]ip ip-prefix 2 permit 172.16.5.0 24 greater-equal 24 less-equal 24
创建Route-Policy origin,并创建节点10,在其中调用IP前缀列表2
[R1]route-policy origin permit node 10
[R1-route-policy] if-match ip-prefix 2
[R1-route-policy] quit
R1上修改为使用import-route direct将直连路由发布到BGP,调用Route-Policy origin限制只引入Loopback5接口路由
[R1]bgp 100
[R1-bgp] import-route direct route-policy origin
在R3上查看BGP路由172.16.5.0/24的明细信息
此时R3优选R4通告的BGP路由172.16.5.0/24。
R2通告(R1发布)的BGP路由172.16.5.0/24此时Origin属性值为incomplete(通过import-route方式发布到BGP),由于Origin属性值原因,该条路由未被优选。
R2、R4之间基于环回口建立IBGP对等体关系,在R2、R3上建立Loopback7接口并将接口路由发布到BGP中,在R4上观察BGP路由优选情况。
R2、R4之间建立IBGP对等体关系
[R2]bgp 64512
[R2-bgp] peer 10.0.4.4 as-number 64512
[R2-bgp] peer 10.0.4.4 connect-interface LoopBack 0
[R4]bgp 64512
[R4-bgp] peer 10.0.2.2 as-number 64512
[R4-bgp] peer 10.0.2.2 connect-interface LoopBack0
检查IBGP对等体关系状态
R2、R4上创建Loopback7接口,并将接口路由发布到BGP
[R2]interface LoopBack 7
[R2-LoopBack7] ip address 172.16.7.1 24
[R2-LoopBack7] quit
[R2]bgp 64512
[R2-bgp] network 172.16.7.0 24
[R3]interface LoopBack 7
[R3-LoopBack7] ip address 172.16.7.1 24
[R3-LoopBack7] quit
[R3]bgp 64512
[R3-bgp] network 172.16.7.0 24
在R4上查看BGP路由172.16.7.0/24的明细信息
R4优选R3发布的BGP路由,其IGP cost为1,小于R2发布的BGP路由IGP cost 2。
R2发布的BGP路由未被优选的原因为IGP cost。
]]>首先运行Opendaylight,并安装好组件
编辑路由脚本脚本
#!/usr/bin/python
import time
from mininet.net import Mininet
from mininet.node import Controller, RemoteController, OVSKernelSwitch,UserSwitch
from mininet.cli import CLI
from mininet.log import setLogLevel
from mininet.link import Link, TCLink
def topology():
"Create a network."
net = Mininet( controller=RemoteController, link=TCLink, switch=OVSKernelSwitch )
print "*** Creating nodes ***"
h1 = net.addHost( 'h1', mac='00:00:00:00:00:01', ip='10.123.10.1/24' )
h2 = net.addHost( 'h2', mac='00:00:00:00:00:02', ip='10.123.10.2/24' )
h3 = net.addHost( 'h3', mac='00:00:00:00:00:03', ip='10.123.1.1/24' )
s1 = net.addSwitch( 's1', listenPort=6673, mac='00:00:00:00:00:11' )
s2 = net.addSwitch( 's2', listenPort=6674, mac='00:00:00:00:00:12' )
c0 = net.addController( 'c0', controller=RemoteController, ip='127.0.0.1', port=6633 )
print "*** Creating links ***"
net.addLink(s1, h1, 1, 0)
net.addLink(s2, h3, 1, 0)
Link(h2, s1, intfName1='h2-eth0')
Link(h2, s2, intfName1='h2-eth1')
h2.cmd('ifconfig h2-eth1 10.123.1.2 netmask 255.255.255.0')
h2.cmd('sysctl net.ipv4.ip_forward=1')
h1.cmd('route add default gw 10.123.10.2')
h3.cmd('route add default gw 10.123.1.2')
print "*** Starting network ***"
net.build()
c0.start()
s1.start( [c0] )
s2.start( [c0] )
print "*** Running CLI ***"
CLI( net )
print "*** Stopping network ***"
net.stop()
if __name__ == '__main__':
setLogLevel( 'info' )
topology()
运行脚本
python router.py
两个交换机下发转发规则:
root@guest-virtual-machine:/home/guest# ovs-ofctl add-flow s1 in_port=1,actions=output:2
root@guest-virtual-machine:/home/guest# ovs-ofctl add-flow s1 in_port=2,actions=output:1
root@guest-virtual-machine:/home/guest# ovs-ofctl add-flow s2 in_port=1,actions=output:2
root@guest-virtual-machine:/home/guest# ovs-ofctl add-flow s2 in_port=2,actions=output:1
在CLI命令行里执行
mininet> h1 route add default gw 10.123.10.2
mininet> h3 route add default gw 10.123.1.2
mininet> h1 ping 10.123.10.2
mininet> h1 ping 10.123.1.2
这时候再次测试h1 ping h3 就可以通
环境继承上述,再添加一个h4,使他们都可以通
mininet> py net.addHost( 'h4', mac='00:00:00:00:00:04', ip='10.123.123.1/24' )
mininet> py net.addSwitch( 's3', listenPort=6675, mac='00:00:00:00:00:13' )
创建链路
mininet> py net.addLink(s3, h4, 1, 0)
mininet> py net.addLink(h2, s3, intfName1='h2-eth2')
环境继承上述,再添加一个h4,使他们都可以通
//添加h4设备
h4 = net.addHost( 'h4', mac='00:00:00:00:00:04', ip='10.123.123.1/24' )
//添加s3交换机
s3 = net.addSwitch( 's3', listenPort=6675, mac='00:00:00:00:00:13' )
//添加s3和h4的链路
net.addLink(s3, h4, 1, 0)
//设置ip端口
h2.cmd('ifconfig h2-eth2 10.123.123.2 netmask 255.255.255.0')
//设置h4的网关
h4.cmd('route add default gw 10.123.123.2')
//开启s3
s3.start( [c0] )
]]>//R2上新添加一个loopback1
ip add 10.2.2.2 24
<R2>ping -c 1 10.123.12.1
PING 10.123.12.1: 56 data bytes, press CTRL_C to break
Reply from 10.123.12.1: bytes=56 Sequence=1 ttl=255 time=220 ms
--- 10.123.12.1 ping statistics ---
1 packet(s) transmitted
1 packet(s) received
0.00% packet loss
round-trip min/avg/max = 220/220/220 ms
<R2>ping -c 1 10.123.23.3
PING 10.123.23.3: 56 data bytes, press CTRL_C to break
Reply from 10.123.23.3: bytes=56 Sequence=1 ttl=255 time=100 ms
--- 10.123.23.3 ping statistics ---
1 packet(s) transmitted
1 packet(s) received
0.00% packet loss
round-trip min/avg/max = 100/100/100 ms
<R2>ping -c 1 10.123.24.4
PING 10.123.24.4: 56 data bytes, press CTRL_C to break
Reply from 10.123.24.4: bytes=56 Sequence=1 ttl=255 time=170 ms
--- 10.123.24.4 ping statistics ---
1 packet(s) transmitted
1 packet(s) received
0.00% packet loss
round-trip min/avg/max = 170/170/170 ms
<R3>ping -c 1 10.123.34.4
PING 10.123.34.4: 56 data bytes, press CTRL_C to break
Reply from 10.123.34.4: bytes=56 Sequence=1 ttl=255 time=40 ms
--- 10.123.34.4 ping statistics ---
1 packet(s) transmitted
1 packet(s) received
0.00% packet loss
round-trip min/avg/max = 40/40/40 ms
R1、R2、R3、R4使用Loopback0接口地址作为Router ID,在各个设备的互联接口、Loopback0接口激活OSPF。
[R1-ospf-1-area-0.0.0.0]dis this
[V200R003C00]
#
area 0.0.0.0
network 10.0.1.1 0.0.0.0
network 10.123.12.1 0.0.0.0
#
return
[R2-ospf-1-area-0.0.0.0]dis this
[V200R003C00]
#
area 0.0.0.0
network 10.0.2.2 0.0.0.0
network 10.123.12.2 0.0.0.0
network 10.123.23.2 0.0.0.0
network 10.123.24.2 0.0.0.0
#
return
[R3-ospf-1-area-0.0.0.0]dis this
[V200R003C00]
#
area 0.0.0.0
network 10.0.3.3 0.0.0.0
network 10.123.23.3 0.0.0.0
network 10.123.34.3 0.0.0.0
#
return
[R4-ospf-1-area-0.0.0.0]dis this
[V200R003C00]
#
area 0.0.0.0
network 10.0.4.4 0.0.0.0
network 10.123.24.4 0.0.0.0
network 10.123.34.4 0.0.0.0
#
return
查看R4的OSPF路由表
可以看出来已经学到了全网路由
bgp 64511
在R2、R3上查看IBGP对等体状态
AS内的IBGP对等体关系成功建立
[R2]bgp 64511
[R2-bgp]peer 10.123.12.1 reflect-client
[R3]bgp 64511
[R3-bgp]peer 10.123.23.2 reflect-client
[R4]bgp 64511
[R4-bgp]peer 10.123.34.3 reflect-client
在本步骤中,我们将在R2上发布BGP路由10.2.2.0/24,并观察该路由依次经路由反射器R3、R4反射后,被通告回R2从而引发潜在路由环路风险的情况。
缺省情况下,R2发布BGP路由后,该路由将被R2直接通告给R4,另一方面也会通过R3反射给R4,此时R4将优选R2直接通告过来的路由,从而不会再将R3反射过来的路由再反射回给R2。为此,我们需要在R2上部署路由策略,使R2不直接向R4通告10.2.2.0/24路由。
//在BGP中调用路由策略
[R2]bgp 64511
[R2-bgp]peer 10.123.24.4 route-policy bgp export
//在R2上发布路由
[R2]bgp 64511
[R2-bgp] network 10.2.2.0 24
在R2、R3上查看BGP路由10.2.2.0/24信息
在R4上查看BGP路由10.2.2.0/24的信息
//让R4重新发送Update报文
<R2>refresh bgp 10.123.24.4 import
查看R2上Update报文收发数量
取消R2上的BGP路由发布
[R2]bgp 64511
[R2-bgp] undo network 10.2.2.0 24
一次查看R1、R2、R3、R4上BGP路由的10.1.1.0/24的信息
R1为BGP路由10.1.1.0/24的始发者,R1将路由通告给了R2(10.0.12.2)
来自路由反射器客户端R1的BGP路由10.1.1.0/24,R2将其反射给了R3(10.0.23.3)
来自路由反射器客户端R2的BGP路由10.1.1.0/24,R2反射时添加了Cluster_List属性,值为10.0.2.2,R3*将该条路由反射给了R4(10.0.34.4)
来自路由反射器客户端R3的BGP路由10.1.1.0/24,R3反射时添加了Cluster_List属性的值,当前值为10.0.3.3,10.0.2.2,R4将该条路由反射给了R2(10.0.24.2)
再次查看R2的BGP路由表
在R2上查看BGP对等体10.123.24.4的详细信息
R2从R4收到了1个Update报文,未向R4发送Update报文(路由策略限制),但是本地BGP路由表中没有R4通告的BGP路由10.1.1.0/24。
在R2上触发入方向的软复位,让R4重新发送Update报文
<R2>refresh bgp 10.123.24.4 import
<R2>display bgp peer 10.123.24.4 verbose | in Update
Update-group ID: 1
Update messages 2
Update messages 0
接收的Update报文数量增加,R2从R4收到了BGP路由10.1.1.0/24的通告。
再次查看R2上BGP路由10.1.1.0 24的明细信息
依旧只有来自R1通告的1条BGP路由,R4通告的BGP路由其Cluster_List属性值中包含了R2的Cluster-ID,R2忽略了该路由通告。
]]>