春风十里不如你 —— Taozi - ensp https://xiongan.host/index.php/tag/ensp/ 华为S系列的交换机Telnet登录 https://xiongan.host/index.php/archives/230/ 2024-04-06T07:47:35+08:00 通过telent登录交换机应用场景:两台物理交换机(同段)之间的telnet访问 SW2 可以 以AAA验证方式登录到SW1的VRP系统已经配置好了交换机的vlanif 2端口ip (两台都在同段)具体配置配置Telnet登录所用的VTY用户界面的终端属性,指定VTY 0\~4这5条VTY虚拟通道可以用于登录[SW1]user-interface vty 0 4 [SW1-ui-vty0-4]idle-timeout 20 //设置超时间为20分钟 [SW1-ui-vty0-4]history-command max-size 20   //设置历史命令缓冲区的大小为20配置Telnet登录VTY用户界面的AAA验证方式和用户类别[SW1-ui-vty0-4]authentication-mode aaa [SW1-ui-vty0-4]user privilege level 15 [SW1-ui-vty0-4]q配置控制通过Telnet访问交换机的用户ACL策略[SW1]user-interface maximum-vty 5 //设置VTY用户界面的最大个数 [SW1]acl 2001 [SW1-acl-basic-2001]rule permit source xxx //配置仅允许IP地址xx的主机访问 [SW1-acl-basic-2001]q [SW1]user-interface vty 0 4 [SW1-ui-vty0-4]acl 2001 inbound //在VTY 0-4这5个用户界面中应用上面的ACL创建用于Telnet登录AAA验证的用户名和密码[SW1]aaa [SW1-aaa]local-user huawei password cipher hello@123 //设置用户密码 [SW1-aaa]local-user huawei service-type telnet //设置该用户的服务类型为telnet [SW1-aaa]local-user huawei privilege level 15 //生效级别设置的15开启Telnet服务器功能,并设置端口[SW1]telnet server enable [SW1]telnet server port 1028测试结果查看,在SW2测试telnet交换机SW1 【华为数通】MPLS-Vpn基础实验案例(企业级) https://xiongan.host/index.php/archives/222/ 2023-09-25T16:08:29+08:00 MPLS-VPN基础实验案例整体拓扑要求:某公司在北京设有总部并且在重庆设置分部。公司希望两个区域的员工可以通过私网路由互相访问。在网络边缘设备上使用BGP协议将私网路由发送给运营商,同时需要保证网络信息的安全性。R1,R2,R3,R4属于AS100模拟运营商。运营商内部使用OSPF协议实现IGP互通。在R1,R4建立MP-IBGP邻居,使用MPLS VPN技术使两个区域通过私网路由互访。环境配置首先配置好各个路由器的接口地址以及路由器的环回口地址在R1上创建实例:在R1上创建VPN实例1,并将实例1和接口G0/0/0绑定。需注意,在接口上进行实例的绑定后,原配置IP地址会清空,需要重新配置IP地址。VPN实例用于将VPN私网路由域公网路由隔离,不同VPN实例中的路由也是相互隔离的。在实例中需要配置RD值和RT值,RD用于区分每个VPN实例的VPN路由,最好保证RD值全网唯一,保证路由在公网传递时不冲突;RT值用于控制VPN路由信息的接收和发布。在R4上创建实例:部署OSPF在R1上配置ospf:在R2上配置ospf:在R3上配置ospf:在R4上配置ospf:在R5上配置ospf:在R6上配置ospf:在R1上查看邻居关系:可以观察到,R1与R2,R5成功建立OSPF邻居关系。配置MPLS在R1上配置mpls:在R2上配置mpls:在R3上配置mpls:在R4上配置mpls:配置BGP在R1上配置BGP:在R1与R4之间使用环回口建立IBGP邻居关系。在R4上配置BGP:在R1上查看BGO vpnv4邻居关系:在R1上路由引入:在R1上将实例中的路由引入进BGP中,通过Vpn4路由向外通告,并将BGP的路由引入进OSPF实例下。由于BGP协议可承载的路由条目更多,为了防止后期引入路由条目过多,设备的负载压力过大,使用路由控制,只引入重庆分公司的路由。在R4上路由引入:在R4上将实例中的路由引入进BGP中,通过Vpn4路由向外通告,并将BGP的路由引入进OSPF实例下。由于BGP协议可承载的路由条目更多,为了防止后期引入路由条目过多,设备的负载压力过大,使用路由控制,只引入北京总公司的路由。在R1上查看标签交换路径:可以观察到,在R1上有AS100内所有的32位环回口地址的FEC,并且为北京总公司的网络生成Vpnv4标签在R5上查看路由:可以观察到,R5通过OSPF学习到重庆分公司的6.6.6.6/32的路由。本路由在R4上通过Vpnv4路由传递给R1,并在R1的OSPF实例下引入BGP路由学习到。在R5上ping测试: 【华为数通】MPLS的基础配置 https://xiongan.host/index.php/archives/221/ 2023-09-19T12:30:45+08:00 MPLS的基础配置整体拓扑首先配置各个路由器及接口ip地址配置OSPFR1: [R1-ospf-1]dis this [V200R003C00] # ospf 1 router-id 1.1.1.1 area 0.0.0.0 network 10.1.1.1 0.0.0.0 network 10.123.12.1 0.0.0.0 # return R2: [R2-ospf-1]dis this [V200R003C00] # ospf 1 router-id 2.2.2.2 area 0.0.0.0 network 10.123.12.2 0.0.0.0 network 10.123.23.2 0.0.0.0 network 20.1.1.1 0.0.0.0 # return R3: [R3-ospf-1]dis this [V200R003C00] # ospf 1 router-id 3.3.3.3 area 0.0.0.0 network 10.123.23.3 0.0.0.0 network 10.123.34.3 0.0.0.0 network 30.1.1.1 0.0.0.0 # return R4: [R4-ospf-1]dis this [V200R003C00] # ospf 1 router-id 4.4.4.4 area 0.0.0.0 network 10.123.34.4 0.0.0.0 network 10.123.45.4 0.0.0.0 network 40.1.1.1 0.0.0.0 # return R5: [R5-ospf-1]dis this [V200R003C00] # ospf 1 router-id 5.5.5.5 area 0.0.0.0 network 10.123.45.5 0.0.0.0 # return在R9上检查路由表配置MPLS在R1上配置MPLS在R2上配置MPLS在R3上配置MPLS在R4上配置MPLS配置MPLS 静态LSP在R1上配置静态LSPR1作为ingress设备在去往40.1.1.1/32和 10.123.45.0/24网络时打上标签,同时作为egress设备,当收到标签为201或者205时弹出标签进行路由转发。[R1]static-lsp ingress 1to4 destination 40.1.1.1 32 nexthop 10.123.12.2 out-labe l 104 [R1]static-lsp ingress 1to45 destination 10.123.45.0 24 nexthop 10.123.12.2 out- label 105 [R1]static-lsp egress 4to1 incoming-interface g0/0/0 in-label 201 [R1]static-lsp egress 45to1 incoming-interface g0/0/0 in-label 205在R2上配置静态LSPR2作为Transit设备进行标签的交换。[R2]static-lsp transit 1to4 incoming-interface GigabitEthernet 0/0/0 in-label 10 4 nexthop 10.123.23.3 out-label 204 [R2]static-lsp transit 1to45 incoming-interface GigabitEthernet 0/0/0 in-label 1 05 nexthop 10.123.23.3 out-label 205 [R2]static-lsp transit 4to1 incoming-interface GigabitEthernet0/0/1 in-label 301 nexthop 10.123.12.1 out-label 201 [R2]static-lsp transit 45to1 incoming-interface GigabitEthernet0/0/1 in-label 30 5 nexthop 10.123.12.1 out-label 205在R3上配置静态LSPR3作为Transit设备进行标签交换。[R3]static-lsp transit 1to4 incoming-interface GigabitEthernet 0/0/0 in-label 20 4 nexthop 10.123.34.4 out-label 304 [R3]static-lsp transit 4to1 incoming-interface GigabitEthernet0/0/1 in-label 401 nexthop 10.123.23.2 out-label 301 [R3]static-lsp transit 1to45 incoming-interface GigabitEthernet 0/0/0 in-label 2 05 nexthop 10.123.23.3 out-label 305 [R3]static-lsp transit 45to1 incoming-interface GigabitEthernet0/0/1 in-label 40 5 nexthop 10.123.23.2 out-label 305在R4上配置静态LSPR4与R1类似,同样既作为ingress设备又作为egress设备。作为ingress设备在去往40.1.1.1/32和 10.123.45.0/24网络时打上标签,同时作为egress设备,当收到标签为201或者205时弹出标签进行路由转发。[R4]static-lsp egress 1to4 incoming-interface g0/0/0 in-label 304 [R4]static-lsp egress 1to45 incoming-interface g0/0/0 in-label 305 [R4]static-lsp ingress 4to1 destination 10.1.1.1 32 nexthop 10.123.34.3 out-labe l 401在R1上查看标签交换路径:标签路径中有In/Out Label,在mpls中,Out Label为空时,表示该FEC是由本路由器向上游发布标签,该路由器一般是该FEC的egress设备。In Label是指本路由器为某个FEC分配给对端的Out Label标签,当In Label为空时,表示本路由器是该LSP的最上游路由器,一般是ingress设备。在R2上查看在R3上查看在R4上查看在R1上Ping测试右键点击R1设备,选择数据抓包中的G0/0/0接口进行抓包。在R1上带环回口ping测试R4的环回口地址。进入抓包界面,点击源为10.1.1.1,目的地址为40.1.1.1的数据包查看。我们可以观察到,在数据包中存在MPLS的头部,由此,判断出10.1.1.1访问40.1.1.1走的是MPLS的路径。 【ENSP】GRE协议基础配置 https://xiongan.host/index.php/archives/210/ 2023-05-22T19:07:26+08:00 GRE协议基础配置本实验模拟企业网络场景,R1为企业总部的网关设备,并且内部有一台服务器,R3连接着企业分公司网关设备,R2为公网ISP设备。一般情况下,运营商只会维护自身的公网路由信息,而不会维护企业内部私网的路由信息,即运营商设备上的路由表中不会出现任何企业内部私网的路由条目。通过配置GRE实现公司总部和分部间私网路由信息的透传及数据通信。拓扑实验实验步骤配置接口端口地址,根据上图信息进行配置检测R1、R3直连链路的连通性配置R1、R3默认路由[R1]ip route-static 0.0.0.0 0.0.0.0 10.1.12.2 [R3]ip route-static 0.0.0.0 0.0.0.0 10.1.23.2测试PC1和Server1的连通性可以观察到,跨越了互联网的两个私网网段之间默认是无法直接通信的。此时可以通过GRE协议来实现跨越了互联网的两个私网网段之间的通信。配置GRE Tunnel配置R1、R3的GRE tunnel在路由器R1、R3上配置GRE Tunnel,使用命令interface tunnel创建隧道接口,指定隧道模式为GRE。配置R1、R3 Tunnel接口的源地址为其S 1/0/0接口IP地址,目的地址为R1/R3的S 1/0/0接口IP地址。还要使用命令ip address配置Tunnel接口的IP地址,注意要在同一网段。 测试R1与目的地址的连通性检查R1、R3隧道接口状态检查R1、R3路由表配置基于GRE接口的动态路由协议测试PC1与Server1的连通性,发现还不能联通配置R1、R3 RIPv2协议检查R1、R3的RIP邻居检查R1、R3路由表测试PC1和Server1的连通性,可以看到已经联通查看R2的路由表 【ENSP】RSTP和MSTP基础配置 https://xiongan.host/index.php/archives/209/ 2023-05-22T19:00:23+08:00 RSTP、MSTP基础配置实验组网任务步骤设备开启STP,并将STP模式切换为RSTP[S1]stp enable [S1]stp mode rstp [S2]stp enable [S2]stp mode rstp [S3]stp enable [S3]stp mode rstp [S4]stp enable [S4]stp mode rstp查看STP的状态和统计信息摘要在S1上查看STP的状态和统计信息(S1为根桥交换机)根桥选举控制配置S1为主根桥,S2为备份根桥[S1]stp priority 4096 [S2]stp priority 8192在另外两台交换机保持默认桥优先级(32768)的情况下,S1拥有最小的桥优先级,S2次之。再次查看S1上的状态信息(此时S1的桥优先级为4096,并且此时仍然是根桥)取消S1、S2上手动调整桥优先级的配置,使用stp root命令指定根桥和备份根桥[S1]undo stp priority [S1]stp root primary [S2]undo stp priority [S2]stp root secondary查看S1和S2的stp状态信息S1的桥优先级为0,而S2的桥优先级为4096,此时S1为根桥,S2为备份根桥。修改接口开销控制根端口选举在S4上查看stp状态和统计信息S4上0/0/2拥有更小的RPC(根路径开销),从而成为根端口查看S4的0/0/2的STP状态和统计信息此时路径开销计算方法为Dotlt,接口的STP cost的值为20000修改S4的0/0/2的STP cost值为40001[S4]interface g0/0/2 [S4-GigabitEthernet0/0/2]stp cost 40001 [S4-GigabitEthernet0/0/2]查看s4的STP状态信息此时0/0/1的RPC为40000,小鱼0/0/2的RPC 40001 S4的0/0/1接口成为根端口修改接口优先级控制根端口选举查看S2的STP状态信息S2上GE0/0/10、GE0/0/11接口收到的BPDU拥有相同的RPC、网桥ID、接口优先级,此时将会比较接收到的BPDU接口ID中的接口编号。在S1、S2上开启LLDP,查看接口的互联关系[S1]lldp enable [S2]lldp enable [S2]display lldp neighbor briefS2的GE0/0/10接口对端为S1的GE0/0/10接口,S2的GE0/0/11接口对端为S1的GE0/0/11接口,S2的GE0/0/10接口接收到的BPDU拥有更小的接口编号,这是GE0/0/10成为根端口的原因在S1上修改GE0/0/11的STP接口优先级,使其发送的BPDU优于 GE0/0/10发送的BPDU[S1]interface GigabitEthernet 0/0/11 [S1-GigabitEthernet0/0/11] stp port priority 64STP接口优先级为128,数值越小越优。再次查看S2的stp状态信息此时S2的GE0/0/10接口成为根端口。MSTP基础配置在所有交换机上创建VLAN10、20、30、40、50、60、70、80,配置MSTP域hcip,并创建两个新的实例:Instance 1、Instance 2,将VLAN10、30、50、70映射到Instance 1,将VLAN20、40、60、80映射到Instance 2,同时将SW1规划为MSTI1的主根桥、MSTI2的备份根桥,将SW2规划为MSTI2的主根桥、MSTI1的备份根桥。[S1]vlan batch 10 20 30 40 50 60 70 80 [S2]vlan batch 10 20 30 40 50 60 70 80 [S3]vlan batch 10 20 30 40 50 60 70 80 [S4]vlan batch 10 20 30 40 50 60 70 80将所有的互联接口(S1、S2、S3、S4)配置为Trunk接口,放通所有的(接口端口)Vlaninterface GigabitEthernet0/0/10 port link-type trunk port trunk allow-pass vlan 10 20 30 40 50 60 70 80 # interface GigabitEthernet0/0/11 port link-type trunk port trunk allow-pass vlan 10 20 30 40 50 60 70 80 stp instance 0 port priority 64 # interface GigabitEthernet0/0/12 port link-type trunk port trunk allow-pass vlan 10 20 30 40 50 60 70 80 # interface GigabitEthernet0/0/13 port link-type trunk port trunk allow-pass vlan 10 20 30 40 50 60 70 80修改STP模式为MSTP[S1]stp mode mstp [S2]stp mode mstp [S3]stp mode mstp [S4]stp mode mstp配置MSTP[S1]stp region-configuration [S1-mst-region] region-name hcip [S1-mst-region] revision-level 1 [S1-mst-region] instance 1 vlan 10 30 50 70 [S1-mst-region] instance 2 vlan 20 40 60 80 [S1-mst-region] active region-configuration Info: This operation may take a few seconds. Please wait for a moment...done. [S1-mst-region] quit / [S2]stp region-configuration [S2-mst-region] region-name hcip [S2-mst-region] revision-level 1 [S2-mst-region] instance 1 vlan 10 30 50 70 [S2-mst-region] instance 2 vlan 20 40 60 80 [S2-mst-region] active region-configuration Info: This operation may take a few seconds. Please wait for a moment...done. [S2-mst-region] quit / [S3]stp region-configuration [S3-mst-region] region-name hcip [S3-mst-region] revision-level 1 [S3-mst-region] instance 1 vlan 10 30 50 70 [S3-mst-region] instance 2 vlan 20 40 60 80 [S3-mst-region] active region-configuration Info: This operation may take a few seconds. Please wait for a moment...done. [S3-mst-region] quit / [S4]stp region-configuration [S4-mst-region] region-name hcip [S4-mst-region] revision-level 1 [S4-mst-region] instance 1 vlan 10 30 50 70 [S4-mst-region] instance 2 vlan 20 40 60 80 [S4-mst-region] active region-configuration Info: This operation may take a few seconds. Please wait for a moment...done. [S4-mst-region] quit在S1上检查MSTP实例和Vlan的映射关系//配置SW1为MSTI1的根桥、MSTI2的备份根桥 [S1]stp instance 1 root primary [S1]stp instance 2 root secondary //配置SW2为MSTI2的根桥、MSTI1的备份根桥 [S2]stp instance 1 root secondary [S2]stp instance 2 root primary在S1上查看MST1状态信息S1上所有接口都是指定接口,S1为MSTI1的根桥S2上所有接口都是指定接口,S2为MSTI2的根桥。 【BGP】BGP路由优选 https://xiongan.host/index.php/archives/202/ 2023-04-21T18:18:36+08:00 BGP路由优选实验组网R2、R3、R4各添加Loopback0 接口 10.123.x.x测试R2、R4的连通性配置OSPF 64512//配置R2,激活OSPF [R2]ospf 1 router-id 10.123.2.2 [R2-ospf-1] area 0.0.0.0 [R2-ospf-1-area-0.0.0.0] network 10.123.2.2 0.0.0.0 [R2-ospf-1-area-0.0.0.0] network 10.123.23.2 0.0.0.0 [R2-ospf-1-area-0.0.0.0] quit [R2-ospf-1] quit //配置R3.激活OSPF [R3]ospf 1 router-id 10.123.3.3 [R3-ospf-1] area 0.0.0.0 [R3-ospf-1-area-0.0.0.0] network 10.123.3.3 0.0.0.0 [R3-ospf-1-area-0.0.0.0] network 10.123.23.3 0.0.0.0 [R3-ospf-1-area-0.0.0.0] network 10.123.34.3 0.0.0.0 [R3-ospf-1-area-0.0.0.0] quit [R3-ospf-1] quit //配置R4,激活OSPF [R4]ospf 1 router-id 10.123.4.4 [R4-ospf-1] area 0.0.0.0 [R4-ospf-1-area-0.0.0.0] network 10.123.4.4 0.0.0.0 [R4-ospf-1-area-0.0.0.0] network 10.123.34.4 0.0.0.0 [R4-ospf-1-area-0.0.0.0] quit [R4-ospf-1] quit在R3查看ospf的邻居信息查看OSPF路由表配置BGP对等体//配置R1 [R1]bgp 100 [R1-bgp] router-id 10.123.1.1 [R1-bgp] peer 10.123.12.2 as 64512 //配置R2 [R2]bgp 64512 [R2-bgp] router-id 10.123.2.2 [R2-bgp] peer 10.123.3.3 as-number 64512 [R2-bgp] peer 10.123.3.3 connect-interface LoopBack0 [R2-bgp] peer 10.123.3.3 next-hop-local [R2-bgp] peer 10.123.12.1 as-number 100 //配置R3 [R3]bgp 64512 [R3-bgp] router-id 10.123.3.3 [R3-bgp] peer 10.123.2.2 as-number 64512 [R3-bgp] peer 10.123.2.2 connect-interface LoopBack0 [R3-bgp] peer 10.123.4.4 as-number 64512 [R3-bgp] peer 10.123.4.4 connect-interface LoopBack0 //配置R4 [R4]bgp 64512 [R4-bgp] router-id 10.123.4.4 [R4-bgp] peer 10.123.3.3 as-number 64512 [R4-bgp] peer 10.123.3.3 connect-interface LoopBack0 [R4-bgp] peer 10.123.3.3 next-hop-local [R4-bgp] peer 10.123.45.5 as-number 200 //配置R5 [R5]bgp 200 [R5-bgp] router-id 10.123.5.5 [R5-bgp] peer 10.123.45.4 as 64512在R2、R4上检查BGP对等体状态路由发布到BGP中//R1 [R1]bgp 100 [R1-bgp] network 172.16.1.0 24 [R1-bgp] network 172.16.2.0 24 [R1-bgp] network 172.16.3.0 24 [R1-bgp] network 172.16.4.0 24 //R5 [R5]bgp 200 [R5-bgp] network 172.16.1.0 24 [R5-bgp] network 172.16.2.0 24 [R5-bgp] network 172.16.3.0 24 [R5-bgp] network 172.16.4.0 24查看R3的路由表,查看BGP是否学习修改AS_Path属性//创建IP前缀列表1,匹配Loopback1接口路由 [R1]ip ip-prefix 1 permit 172.16.1.0 24 greater-equal 24 less-equal 24 //创建Route-Policy hcip,并创建节点10,在其中调用IP前缀列表1,修改AS_Path属性值 [R1]route-policy hcip permit node 10 [R1-route-policy] if-match ip-prefix 1 [R1-route-policy] apply as-path 300 400 additive [R1-route-policy] quit [R1]route-policy hcip permit node 20 //对向BGP对等体R2通告的BGP路由应用Route-Policy [R1]bgp 100 [R1-bgp] peer 10.0.12.2 route-policy hcip export //在R1上触发出方向的软复位,刷新对外通告的BGP路由 <R1>refresh bgp all export在R3上查看BGP路由172.16.1.0/24的信息此时R3优选R4通告的BGP路由172.16.1.0/24,R2通告的未被优选的原因是AS_Path长度。修改Local_Preference属性创建IP前缀列表1,匹配BGP路由172.16.2.0/24[R4]ip ip-prefix 1 permit 172.16.2.0 24 greater-equal 24 less-equal 24创建Route-Policy hcip,并创建节点10,在其中调用IP前缀列表1,修改Local_Preference属性值[R4]route-policy hcip permit node 10 [R4-route-policy] if-match ip-prefix 1 [R4-route-policy] apply local-preference 200 [R4-route-policy] quit [R4]route-policy hcip permit node 20对向BGP对等体R3通告的BGP路由应用Route-Policy[R4]bgp 64512 [R4-bgp] peer 10.0.3.3 route-policy hcip export刷新对外通告BGP路由<R4>refresh bgp all export在R3上查看BGP路由172.16.2.0/24的明细信息此时R3优选R4通告的BGP路由172.16.2.0/24,R2通告的BGP路由其Local_Preference值为100,小于R3通告的BGP路由Local_Preference值200,因此R2通告的BGP路由未被优选。修改MED属性在R2上使得R3优选R5发布的BGP路由172.16.3.0/24//ip前缀列表1 匹配GBP路由172.16.3.0/24 [R2]ip ip-prefix 1 permit 172.16.3.0 24 greater-equal 24 less-equal 24创建Route-Policy hcip,并创建节点10,在其中调用IP前缀列表1,修改MED属性值[R2]route-policy hcip permit node 10 [R2-route-policy] if-match ip-prefix 1 [R2-route-policy] apply cost 200 [R2-route-policy] quit [R2]route-policy hcip permit node 20对来自BGP对等体R1的BGP路由应用Route-Policy[R2]bgp 64512 [R2-bgp] peer 10.0.12.1 route-policy hcip import在R2刷新接收到的BGP路由<R2>refresh bgp all import在R3上配置允许来自不同AS的BGP路由的MED值[R3]bgp 64512 [R3-bgp] compare-different-as-med在R3上查看BGP路由172.16.3.0/24的明细信息R2通告的BGP路由172.16.3.0/24其MED值为200,而R4通告BGP路由MED值为0,R3优选MED值较小的BGP路由,因此R2通告的BGP路由未被优选。修改preferred-value属性修改R3的路由的pre-value属性的策略,使得R3优选R4通告的BGP路由172.16.4.0/24创建IP前缀列表1,匹配BGP路由172.16.4.0/24[R3]ip ip-prefix 1 permit 172.16.4.0 24 greater-equal 24 less-equal 24创建Route-Policy hcip,并创建节点10,在其中调用IP前缀列表1,修改preferred-value属性值[R3]route-policy hcip permit node 10 [R3-route-policy] if-match ip-prefix 1 [R3-route-policy] apply preferred-value 300 [R3-route-policy] quit [R3]route-policy hcip permit node 20对来自BGP对等体R4的BGP路由应用Route-Policy[R3]bgp 64512 [R3-bgp] peer 10.123.4.4 route-policy hcip importR3刷新收到的路由并查看BGP路由172.16.4.0/24的信息R4通告的BGP路由172.16.3.0/24其preferred-value值为300,而R2通告的preferred-value值为0,R3优选preferred-value值较大的BGP路由,因此R3优选R4通告的BGP路由。修改Origin属性在R1、R5上创建Loopback5接口,将接口路由发布到BGP中,验证Origin属性为IGP的BGP路由优于Origin属性为Incomplete的BGP路由。R1、R5上创建Loopback5,IP地址为172.16.5.1/24[R1]interface LoopBack 5 [R1-LoopBack5] ip address 172.16.5.1 24 [R1-LoopBack5] quit [R5]interface LoopBack 5 [R5-LoopBack5] ip address 172.16.5.1 24 [R5-LoopBack5] quit在R1、R5上将Loopback5接口路由发布到BGP中,通过network方式[R1]bgp 100 [R1-bgp] network 172.16.5.0 24 [R5]bgp 200 [R5-bgp] network 172.16.5.0 24在R3上查看BGP路由表此时R3上优选R2通告(由R1发布)的BGP路由172.16.5.0/24,此时R2、R4通告的BGP路由Origin属性值都为IGP。在R1上取消将Loopback5接口路由发布到BGP创建IP前缀列表2,匹配R1 Loopback5接口路由172.16.5.0/24[R1]ip ip-prefix 2 permit 172.16.5.0 24 greater-equal 24 less-equal 24创建Route-Policy origin,并创建节点10,在其中调用IP前缀列表2[R1]route-policy origin permit node 10 [R1-route-policy] if-match ip-prefix 2 [R1-route-policy] quitR1上修改为使用import-route direct将直连路由发布到BGP,调用Route-Policy origin限制只引入Loopback5接口路由[R1]bgp 100 [R1-bgp] import-route direct route-policy origin在R3上查看BGP路由172.16.5.0/24的明细信息此时R3优选R4通告的BGP路由172.16.5.0/24。R2通告(R1发布)的BGP路由172.16.5.0/24此时Origin属性值为incomplete(通过import-route方式发布到BGP),由于Origin属性值原因,该条路由未被优选。验证BGP优选到Nex_Hop的IGP度量值最小的路由R2、R4之间基于环回口建立IBGP对等体关系,在R2、R3上建立Loopback7接口并将接口路由发布到BGP中,在R4上观察BGP路由优选情况。R2、R4之间建立IBGP对等体关系[R2]bgp 64512 [R2-bgp] peer 10.0.4.4 as-number 64512 [R2-bgp] peer 10.0.4.4 connect-interface LoopBack 0 [R4]bgp 64512 [R4-bgp] peer 10.0.2.2 as-number 64512 [R4-bgp] peer 10.0.2.2 connect-interface LoopBack0检查IBGP对等体关系状态R2、R4上创建Loopback7接口,并将接口路由发布到BGP[R2]interface LoopBack 7 [R2-LoopBack7] ip address 172.16.7.1 24 [R2-LoopBack7] quit [R2]bgp 64512 [R2-bgp] network 172.16.7.0 24 [R3]interface LoopBack 7 [R3-LoopBack7] ip address 172.16.7.1 24 [R3-LoopBack7] quit [R3]bgp 64512 [R3-bgp] network 172.16.7.0 24在R4上查看BGP路由172.16.7.0/24的明细信息R4优选R3发布的BGP路由,其IGP cost为1,小于R2发布的BGP路由IGP cost 2。R2发布的BGP路由未被优选的原因为IGP cost。 【BGP】路由器反射器 https://xiongan.host/index.php/archives/199/ 2023-04-18T20:56:51+08:00 BGP路由反射器各接口和环回口ip地址如上图//R2上新添加一个loopback1 ip add 10.2.2.2 24在R2、R3路由器上测试连通性<R2>ping -c 1 10.123.12.1 PING 10.123.12.1: 56 data bytes, press CTRL_C to break   Reply from 10.123.12.1: bytes=56 Sequence=1 ttl=255 time=220 ms --- 10.123.12.1 ping statistics ---   1 packet(s) transmitted   1 packet(s) received   0.00% packet loss   round-trip min/avg/max = 220/220/220 ms <R2>ping -c 1 10.123.23.3 PING 10.123.23.3: 56 data bytes, press CTRL_C to break   Reply from 10.123.23.3: bytes=56 Sequence=1 ttl=255 time=100 ms --- 10.123.23.3 ping statistics ---   1 packet(s) transmitted   1 packet(s) received   0.00% packet loss   round-trip min/avg/max = 100/100/100 ms <R2>ping -c 1 10.123.24.4 PING 10.123.24.4: 56 data bytes, press CTRL_C to break   Reply from 10.123.24.4: bytes=56 Sequence=1 ttl=255 time=170 ms --- 10.123.24.4 ping statistics ---   1 packet(s) transmitted   1 packet(s) received   0.00% packet loss   round-trip min/avg/max = 170/170/170 ms<R3>ping -c 1 10.123.34.4 PING 10.123.34.4: 56 data bytes, press CTRL_C to break   Reply from 10.123.34.4: bytes=56 Sequence=1 ttl=255 time=40 ms --- 10.123.34.4 ping statistics ---   1 packet(s) transmitted   1 packet(s) received   0.00% packet loss   round-trip min/avg/max = 40/40/40 ms配置ospfR1、R2、R3、R4使用Loopback0接口地址作为Router ID,在各个设备的互联接口、Loopback0接口激活OSPF。[R1-ospf-1-area-0.0.0.0]dis this [V200R003C00] # area 0.0.0.0 network 10.0.1.1 0.0.0.0 network 10.123.12.1 0.0.0.0 # return [R2-ospf-1-area-0.0.0.0]dis this [V200R003C00] # area 0.0.0.0 network 10.0.2.2 0.0.0.0 network 10.123.12.2 0.0.0.0 network 10.123.23.2 0.0.0.0 network 10.123.24.2 0.0.0.0 # return [R3-ospf-1-area-0.0.0.0]dis this [V200R003C00] # area 0.0.0.0 network 10.0.3.3 0.0.0.0 network 10.123.23.3 0.0.0.0 network 10.123.34.3 0.0.0.0 # return [R4-ospf-1-area-0.0.0.0]dis this [V200R003C00] # area 0.0.0.0 network 10.0.4.4 0.0.0.0 network 10.123.24.4 0.0.0.0 network 10.123.34.4 0.0.0.0 # return查看R2、R3上的ospf邻居信息查看R4的OSPF路由表可以看出来已经学到了全网路由配置IBGP对等体bgp 64511在R2、R3上查看IBGP对等体状态AS内的IBGP对等体关系成功建立配置路由反射器[R2]bgp 64511 [R2-bgp]peer 10.123.12.1 reflect-client [R3]bgp 64511 [R3-bgp]peer 10.123.23.2 reflect-client [R4]bgp 64511 [R4-bgp]peer 10.123.34.3 reflect-client在本步骤中,我们将在R2上发布BGP路由10.2.2.0/24,并观察该路由依次经路由反射器R3、R4反射后,被通告回R2从而引发潜在路由环路风险的情况。缺省情况下,R2发布BGP路由后,该路由将被R2直接通告给R4,另一方面也会通过R3反射给R4,此时R4将优选R2直接通告过来的路由,从而不会再将R3反射过来的路由再反射回给R2。为此,我们需要在R2上部署路由策略,使R2不直接向R4通告10.2.2.0/24路由。配置路由策略//在BGP中调用路由策略 [R2]bgp 64511 [R2-bgp]peer 10.123.24.4 route-policy bgp export //在R2上发布路由 [R2]bgp 64511 [R2-bgp] network 10.2.2.0 24在R2、R3上查看BGP路由10.2.2.0/24信息在R4上查看BGP路由10.2.2.0/24的信息//让R4重新发送Update报文 <R2>refresh bgp 10.123.24.4 import查看R2上Update报文收发数量验证Cluster_List实现路由防环验证Cluster_List实现路由防环取消R2上的BGP路由发布[R2]bgp 64511 [R2-bgp] undo network 10.2.2.0 24一次查看R1、R2、R3、R4上BGP路由的10.1.1.0/24的信息R1为BGP路由10.1.1.0/24的始发者,R1将路由通告给了R2(10.0.12.2)来自路由反射器客户端R1的BGP路由10.1.1.0/24,R2将其反射给了R3(10.0.23.3)来自路由反射器客户端R2的BGP路由10.1.1.0/24,R2反射时添加了Cluster_List属性,值为10.0.2.2,R3*将该条路由反射给了R4(10.0.34.4)来自路由反射器客户端R3的BGP路由10.1.1.0/24,R3反射时添加了Cluster_List属性的值,当前值为10.0.3.3,10.0.2.2,R4将该条路由反射给了R2(10.0.24.2)再次查看R2的BGP路由表在R2上查看BGP对等体10.123.24.4的详细信息R2从R4收到了1个Update报文,未向R4发送Update报文(路由策略限制),但是本地BGP路由表中没有R4通告的BGP路由10.1.1.0/24。在R2上触发入方向的软复位,让R4重新发送Update报文<R2>refresh bgp 10.123.24.4 import <R2>display bgp peer 10.123.24.4 verbose | in Update Update-group ID: 1 Update messages 2 Update messages 0接收的Update报文数量增加,R2从R4收到了BGP路由10.1.1.0/24的通告。再次查看R2上BGP路由10.1.1.0 24的明细信息依旧只有来自R1通告的1条BGP路由,R4通告的BGP路由其Cluster_List属性值中包含了R2的Cluster-ID,R2忽略了该路由通告。 【BGP】路由器反射器 https://xiongan.host/index.php/archives/197/ 2023-04-10T14:12:28+08:00 BGP路由反射器各接口和环回口ip地址如上图//R2上新添加一个loopback1 ip add 10.2.2.2 24在R2、R3路由器上测试连通性<R2>ping -c 1 10.123.12.1 PING 10.123.12.1: 56 data bytes, press CTRL_C to break   Reply from 10.123.12.1: bytes=56 Sequence=1 ttl=255 time=220 ms --- 10.123.12.1 ping statistics ---   1 packet(s) transmitted   1 packet(s) received   0.00% packet loss   round-trip min/avg/max = 220/220/220 ms <R2>ping -c 1 10.123.23.3 PING 10.123.23.3: 56 data bytes, press CTRL_C to break   Reply from 10.123.23.3: bytes=56 Sequence=1 ttl=255 time=100 ms --- 10.123.23.3 ping statistics ---   1 packet(s) transmitted   1 packet(s) received   0.00% packet loss   round-trip min/avg/max = 100/100/100 ms <R2>ping -c 1 10.123.24.4 PING 10.123.24.4: 56 data bytes, press CTRL_C to break   Reply from 10.123.24.4: bytes=56 Sequence=1 ttl=255 time=170 ms --- 10.123.24.4 ping statistics ---   1 packet(s) transmitted   1 packet(s) received   0.00% packet loss   round-trip min/avg/max = 170/170/170 ms<R3>ping -c 1 10.123.34.4 PING 10.123.34.4: 56 data bytes, press CTRL_C to break   Reply from 10.123.34.4: bytes=56 Sequence=1 ttl=255 time=40 ms --- 10.123.34.4 ping statistics ---   1 packet(s) transmitted   1 packet(s) received   0.00% packet loss   round-trip min/avg/max = 40/40/40 ms配置ospfR1、R2、R3、R4使用Loopback0接口地址作为Router ID,在各个设备的互联接口、Loopback0接口激活OSPF。[R1-ospf-1-area-0.0.0.0]dis this [V200R003C00] # area 0.0.0.0 network 10.0.1.1 0.0.0.0 network 10.123.12.1 0.0.0.0 # return [R2-ospf-1-area-0.0.0.0]dis this [V200R003C00] # area 0.0.0.0 network 10.0.2.2 0.0.0.0 network 10.123.12.2 0.0.0.0 network 10.123.23.2 0.0.0.0 network 10.123.24.2 0.0.0.0 # return [R3-ospf-1-area-0.0.0.0]dis this [V200R003C00] # area 0.0.0.0 network 10.0.3.3 0.0.0.0 network 10.123.23.3 0.0.0.0 network 10.123.34.3 0.0.0.0 # return [R4-ospf-1-area-0.0.0.0]dis this [V200R003C00] # area 0.0.0.0 network 10.0.4.4 0.0.0.0 network 10.123.24.4 0.0.0.0 network 10.123.34.4 0.0.0.0 # return查看R2、R3上的ospf邻居信息查看R4的OSPF路由表可以看出来已经学到了全网路由配置IBGP对等体bgp 64511在R2、R3上查看IBGP对等体状态AS内的IBGP对等体关系成功建立配置路由反射器[R2]bgp 64511 [R2-bgp]peer 10.123.12.1 reflect-client [R3]bgp 64511 [R3-bgp]peer 10.123.23.2 reflect-client [R4]bgp 64511 [R4-bgp]peer 10.123.34.3 reflect-client在本步骤中,我们将在R2上发布BGP路由10.2.2.0/24,并观察该路由依次经路由反射器R3、R4反射后,被通告回R2从而引发潜在路由环路风险的情况。缺省情况下,R2发布BGP路由后,该路由将被R2直接通告给R4,另一方面也会通过R3反射给R4,此时R4将优选R2直接通告过来的路由,从而不会再将R3反射过来的路由再反射回给R2。为此,我们需要在R2上部署路由策略,使R2不直接向R4通告10.2.2.0/24路由。配置路由策略//在BGP中调用路由策略 [R2]bgp 64511 [R2-bgp]peer 10.123.24.4 route-policy bgp export //在R2上发布路由 [R2]bgp 64511 [R2-bgp] network 10.2.2.0 24在R2、R3上查看BGP路由10.2.2.0/24信息在R4上查看BGP路由10.2.2.0/24的信息//让R4重新发送Update报文 <R2>refresh bgp 10.123.24.4 import查看R2上Update报文收发数量验证Cluster_List实现路由防环取消R2上的BGP路由发布[R2]bgp 64511 [R2-bgp] undo network 10.2.2.0 24一次查看R1、R2、R3、R4上BGP路由的10.1.1.0/24的信息R1为BGP路由10.1.1.0/24的始发者,R1将路由通告给了R2(10.0.12.2)来自路由反射器客户端R1的BGP路由10.1.1.0/24,R2将其反射给了R3(10.0.23.3)来自路由反射器客户端R2的BGP路由10.1.1.0/24,R2反射时添加了Cluster_List属性,值为10.0.2.2,R3将该条路由反射给了R4(10.0.34.4)来自路由反射器客户端R3的BGP路由10.1.1.0/24,R3反射时添加了Cluster_List属性的值,当前值为10.0.3.3,10.0.2.2,R4将该条路由反射给了R2(10.0.24.2)再次查看R2的BGP路由表在R2上查看BGP对等体10.123.24.4的详细信息R2从R4收到了1个Update报文,未向R4发送Update报文(路由策略限制),但是本地BGP路由表中没有R4通告的BGP路由10.1.1.0/24。在R2上触发入方向的软复位,让R4重新发送Update报文<R2>refresh bgp 10.123.24.4 import <R2>display bgp peer 10.123.24.4 verbose | in Update Update-group ID: 1 Update messages 2 Update messages 0接收的Update报文数量增加,R2从R4收到了BGP路由10.1.1.0/24的通告。再次查看R2上BGP路由10.1.1.0 24的明细信息依旧只有来自R1通告的1条BGP路由,R4通告的BGP路由其Cluster_List属性值中包含了R2的Cluster-ID,R2忽略了该路由通告。 【Ensp】配置IPv6网络 https://xiongan.host/index.php/archives/189/ 2022-12-13T16:45:00+08:00 IPv6地址表示冒分十六进制表示法格式为X:X:X:X:X:X:X:X,其中每个X表示地址中的16b,以十六进制表示 例如:ABCD:EF01:2345:6789:ABCD:EF01:2345:6789 这种表示法中,每个X的前导0是可以省略的0位压缩表示法在某些情况下,一个IPv6地址中间可能包含很长的一段0,可以把连续的一段0压缩为“::”。但为保证地址解析的唯一性,地址中”::”只能出现一次 例如FF01:0:0:0:0:0:0:1101 → FF01::1101 0:0:0:0:0:0:0:1 → ::1 0:0:0:0:0:0:0:0 → ::内嵌IPv4地址表示法为了实现IPv4-IPv6互通,IPv4地址会嵌入IPv6地址中,此时地址常表示为:X:X:X:X:X:X:d.d.d.d,前96b采用冒分十六进制表示,而最后32b地址则使用IPv4的点分十进制表示,例如::192.168.0.1与::FFFF:192.168.0.1就是两个典型的例子,注意在前96b中,压缩0位的方法依旧适用配置一个小型ipv6网络R1和R2之间使用静态ipv6地址互联R1-R4的全局和相关接口都使用ipv6功能,同事生成本地链路地址(R1为例)[R1]ipv6 [R1]int g0/0/0 [R1-GigabitEthernet0/0/0]ipv6 enable [R1-GigabitEthernet0/0/0]ipv6 address auto link-local[R1-GigabitEthernet0/0/0]dis this [V200R003C00] # interface GigabitEthernet0/0/0 ipv6 enable ipv6 address 2001::1/64 ipv6 address auto link-local # return[R2]int g0/0/0 [R2-GigabitEthernet0/0/0]dis this [V200R003C00] # interface GigabitEthernet0/0/0 ipv6 enable ipv6 address 2001::2/64 ipv6 address auto link-local # return [R2-GigabitEthernet0/0/0]int g0/0/1 [R2-GigabitEthernet0/0/1]dis this [V200R003C00] # interface GigabitEthernet0/0/1 ipv6 enable ipv6 address 2002::1/64 ipv6 address auto link-local dhcpv6 server pool1 # return [R2-GigabitEthernet0/0/1]int g0/0/2 [R2-GigabitEthernet0/0/2]dis this [V200R003C00] # interface GigabitEthernet0/0/2 ipv6 enable ipv6 address 2003::1/64 ipv6 address auto link-local undo ipv6 nd ra halt # return在R2上配置dhcpv6功能给R3分配地址[R2]dhcp enable [R2]dhcpv6 pool pool1 [R2-dhcpv6-pool-pool1]dis this [V200R003C00] # dhcpv6 pool pool1 address prefix 2002::/64 # return [R2-dhcpv6-pool-pool1]int g0/0/1 [R2-GigabitEthernet0/0/1]dis this [V200R003C00] # interface GigabitEthernet0/0/1 ipv6 enable ipv6 address 2002::1/64 ipv6 address auto link-local dhcpv6 server pool1 # return[R3]dhcp enable [R3-GigabitEthernet0/0/0]dis this [V200R003C00] # interface GigabitEthernet0/0/0 ipv6 enable ipv6 address auto link-local ipv6 address auto dhcp # return在R2使能发布RA报文的功能R4无状态地址配置的方法获取地址[R2-GigabitEthernet0/0/2]dis this [R2-GigabitEthernet0/0/2]undo ipv6 nd ra halt [R4]int g0/0/0 [R4-GigabitEthernet0/0/0]dis this [V200R003C00] # interface GigabitEthernet0/0/0 ipv6 enable ipv6 address auto link-local ipv6 address auto global # return在R4上配置静态地址[R4]ipv6 route-static 2001:: 64 2003::1 [R4]ipv6 route-static 2002:: 64 2003::1在R1配置聚合后的静态路由[R1]ipv6 route-static 2002:: 15 2001::2在R3配置默认路由[R3]ipv6 route-static :: 0 2002::1测试结果 华为ENSP配置一个静态路由【案例】 https://xiongan.host/index.php/archives/12/ 2022-09-27T19:23:00+08:00 静态路由AR配置案例要求:需要不通网段的PC1与PC2、PC3主机分别ping通准备:三台PC端主机、三台路由器(AR2220)操作:配置PC端网络信息PC1配置截图:注意:配置静态路由无需选择DHCP分配,需要自己设置的,这里的网关即下列步骤中的AR1的GE0的串口端ipPC2、PC3的配置同理配置路由器打开路由器AR1后配置:system-view #进入系统界面[Huawei]interface GigabitEthernet 0/0/0 # 进入G端口[Huawei-GigabitEthernet0/0/0]ip addr 10.123.1.1 24 # 配置G端口的IP地址和子网掩码[Huawei-GigabitEthernet0/0/0]quit # 返回上一界面[Huawei]interface GigabitEthernet 0/0/1[Huawei-GigabitEthernet0/0/1]ip addr 1.1.1.1 24[Huawei-GigabitEthernet0/0/1]quit[Huawei]ip route-static 20.123.1.0 24 1.1.1.2 # 配置添加静态路由信息,目标网络,掩码,下一跳[Huawei]interface GigabitEthernet 0/0/2 # 进入G端口[Huawei-GigabitEthernet0/0/2]ip addr 2.2.2.1 24 # 配置G端口的IP地址和子网掩码[Huawei-GigabitEthernet0/0/2]quit[Huawei] ip route-static 30.123.1.0 24 2.2.2.2查看路由表:其中static标识的就是咱们设置的静态地址路由配置AR2路由器:system-view[Huawei]interface GigabitEthernet 0/0/0[Huawei-GigabitEthernet0/0/0]ip addr 1.1.1.2 24[Huawei-GigabitEthernet0/0/0]quit[Huawei]interface GigabitEthernet 0/0/1[Huawei-GigabitEthernet0/0/1]ip addr 20.123.1.1 24[Huawei-GigabitEthernet0/0/1]quit[Huawei]ip route-static 10.123.1.0 30 1.1.1.1查看AR2路由表:配置AR3路由器:system-view[Huawei]interface GigabitEthernet 0/0/0[Huawei-GigabitEthernet0/0/0]ip addr 30.123.1.1 24[Huawei-GigabitEthernet0/0/0]quit[Huawei]interface GigabitEthernet 0/0/1[Huawei-GigabitEthernet0/0/1]ip addr 2.2.2.2 24[Huawei-GigabitEthernet0/0/1]quit[Huawei]ip route-static 10.123.1.0 30 2.2.2.1查看AR3路由表:测试路由交换机switch配置三台静态路由Switch1: # sysname S1 # vlan batch 10 40 50 # interface Vlanif40 ip address 10.1.4.2 255.255.255.252 # interface Vlanif50 ip address 10.1.4.5 255.255.255.252 # interface Vlanif10 ip address 10.1.1.1 255.255.255.0 # interface GigabitEthernet0/0/1 port link-type trunk port trunk allow-pass vlan 10 # interface GigabitEthernet0/0/2 port link-type trunk port trunk allow-pass vlan 40 # interface GigabitEthernet0/0/3 port link-type access port default vlan 50 # ip route-static 10.1.2.0 255.255.255.0 10.1.4.1 ip route-static 10.1.3.0 255.255.255.0 10.1.4.6 # returnSwitch2: # sysname S2 # vlan batch 20 40 # interface Vlanif40 ip address 10.1.4.1 255.255.255.252 # interface Vlanif20 ip address 10.1.2.1 255.255.255.0 # interface GigabitEthernet0/0/1 port link-type trunk port trunk allow-pass vlan 40 # interface GigabitEthernet0/0/2 port link-type access port default vlan 20 # ip route-static 0.0.0.0 0.0.0.0 10.1.4.2 # returnSwitch3: # sysname S3 # vlan batch 30 50 # interface Vlanif50 ip address 10.1.4.6 255.255.255.252 # interface Vlanif30 ip address 10.1.3.1 255.255.255.0 # interface GigabitEthernet0/0/1 port link-type trunk port trunk allow-pass vlan 50 # interface GigabitEthernet0/0/2 port link-type access port default vlan 30 # ip route-static 0.0.0.0 0.0.0.0 10.1.4.5 # return测试连通性(10.1.2.1 ping 10.1.3.1)