春风十里不如你 —— Taozi - 路由器 https://xiongan.host/index.php/tag/%E8%B7%AF%E7%94%B1%E5%99%A8/ zh-CN Tue, 19 Sep 2023 12:30:45 +0800 Tue, 19 Sep 2023 12:30:45 +0800 【华为数通】MPLS的基础配置 https://xiongan.host/index.php/archives/221/ https://xiongan.host/index.php/archives/221/ Tue, 19 Sep 2023 12:30:45 +0800 admin MPLS的基础配置

整体拓扑

image-20230919102958463

首先配置各个路由器及接口ip地址

配置OSPF

R1:
[R1-ospf-1]dis this
[V200R003C00]
#
ospf 1 router-id 1.1.1.1 
 area 0.0.0.0 
  network 10.1.1.1 0.0.0.0 
  network 10.123.12.1 0.0.0.0 
#
return
R2:
[R2-ospf-1]dis this
[V200R003C00]
#
ospf 1 router-id 2.2.2.2 
 area 0.0.0.0 
  network 10.123.12.2 0.0.0.0 
  network 10.123.23.2 0.0.0.0 
  network 20.1.1.1 0.0.0.0 
#
return
R3:
[R3-ospf-1]dis this
[V200R003C00]
#
ospf 1 router-id 3.3.3.3 
 area 0.0.0.0 
  network 10.123.23.3 0.0.0.0 
  network 10.123.34.3 0.0.0.0 
  network 30.1.1.1 0.0.0.0 
#
return
R4:
[R4-ospf-1]dis this
[V200R003C00]
#
ospf 1 router-id 4.4.4.4 
 area 0.0.0.0 
  network 10.123.34.4 0.0.0.0 
  network 10.123.45.4 0.0.0.0 
  network 40.1.1.1 0.0.0.0 
#
return
R5:
[R5-ospf-1]dis this
[V200R003C00]
#
ospf 1 router-id 5.5.5.5 
 area 0.0.0.0 
  network 10.123.45.5 0.0.0.0 
#
return

在R9上检查路由表

image-20230919105035307

配置MPLS

在R1上配置MPLS

image-20230919110025677

在R2上配置MPLS

image-20230919110212764

在R3上配置MPLS

image-20230919110314888

在R4上配置MPLS

image-20230919110424501

配置MPLS 静态LSP

在R1上配置静态LSP

R1作为ingress设备在去往40.1.1.1/32和 10.123.45.0/24网络时打上标签,同时作为egress设备,当收到标签为201或者205时弹出标签进行路由转发。

[R1]static-lsp ingress 1to4 destination 40.1.1.1 32 nexthop 10.123.12.2 out-labe
l 104
[R1]static-lsp ingress 1to45 destination 10.123.45.0 24 nexthop 10.123.12.2 out-
label 105
[R1]static-lsp egress 4to1 incoming-interface g0/0/0 in-label 201
[R1]static-lsp egress 45to1 incoming-interface g0/0/0 in-label 205

在R2上配置静态LSP

R2作为Transit设备进行标签的交换。

[R2]static-lsp transit 1to4 incoming-interface GigabitEthernet 0/0/0 in-label 10
4 nexthop 10.123.23.3 out-label 204
[R2]static-lsp transit 1to45 incoming-interface GigabitEthernet 0/0/0 in-label 1
05 nexthop 10.123.23.3 out-label 205
[R2]static-lsp transit 4to1 incoming-interface GigabitEthernet0/0/1 in-label 301
 nexthop 10.123.12.1 out-label 201
[R2]static-lsp transit 45to1 incoming-interface GigabitEthernet0/0/1 in-label 30
5  nexthop 10.123.12.1 out-label 205

在R3上配置静态LSP

R3作为Transit设备进行标签交换。

[R3]static-lsp transit 1to4 incoming-interface GigabitEthernet 0/0/0 in-label 20
4 nexthop 10.123.34.4 out-label 304
[R3]static-lsp transit 4to1 incoming-interface GigabitEthernet0/0/1 in-label 401
 nexthop 10.123.23.2 out-label 301
[R3]static-lsp transit 1to45 incoming-interface GigabitEthernet 0/0/0 in-label 2
05 nexthop 10.123.23.3 out-label 305
[R3]static-lsp transit 45to1 incoming-interface GigabitEthernet0/0/1 in-label 40
5 nexthop 10.123.23.2 out-label 305

在R4上配置静态LSP

R4与R1类似,同样既作为ingress设备又作为egress设备。作为ingress设备在去往40.1.1.1/32和 10.123.45.0/24网络时打上标签,同时作为egress设备,当收到标签为201或者205时弹出标签进行路由转发。

[R4]static-lsp egress 1to4 incoming-interface g0/0/0 in-label 304
[R4]static-lsp egress 1to45 incoming-interface g0/0/0 in-label 305
[R4]static-lsp ingress 4to1 destination 10.1.1.1 32 nexthop 10.123.34.3 out-labe
l 401

在R1上查看标签交换路径:

标签路径中有In/Out Label,在mpls中,Out Label为空时,表示该FEC是由本路由器向上游发布标签,该路由器一般是该FEC的egress设备。In Label是指本路由器为某个FEC分配给对端的Out Label标签,当In Label为空时,表示本路由器是该LSP的最上游路由器,一般是ingress设备。

image-20230919113901613

在R2上查看

image-20230919114005814

在R3上查看

image-20230919114040102

在R4上查看

image-20230919114103033

在R1上Ping测试

image-20230919114154599

右键点击R1设备,选择数据抓包中的G0/0/0接口进行抓包。在R1上带环回口ping测试R4的环回口地址。

进入抓包界面,点击源为10.1.1.1,目的地址为40.1.1.1的数据包查看。我们可以观察到,在数据包中存在MPLS的头部,由此,判断出10.1.1.1访问40.1.1.1走的是MPLS的路径。

image-20230919114844462

]]>
0 https://xiongan.host/index.php/archives/221/#comments https://xiongan.host/index.php/feed/tag/%E8%B7%AF%E7%94%B1%E5%99%A8/
【BGP】路由器反射器 https://xiongan.host/index.php/archives/199/ https://xiongan.host/index.php/archives/199/ Tue, 18 Apr 2023 20:56:51 +0800 admin BGP路由反射器

image-20230410111903473

各接口和环回口ip地址如上图

//R2上新添加一个loopback1
ip add 10.2.2.2 24

在R2、R3路由器上测试连通性

<R2>ping -c 1 10.123.12.1
  PING 10.123.12.1: 56  data bytes, press CTRL_C to break
    Reply from 10.123.12.1: bytes=56 Sequence=1 ttl=255 time=220 ms

  --- 10.123.12.1 ping statistics ---
    1 packet(s) transmitted
    1 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 220/220/220 ms

<R2>ping -c 1 10.123.23.3
  PING 10.123.23.3: 56  data bytes, press CTRL_C to break
    Reply from 10.123.23.3: bytes=56 Sequence=1 ttl=255 time=100 ms

  --- 10.123.23.3 ping statistics ---
    1 packet(s) transmitted
    1 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 100/100/100 ms

<R2>ping -c 1 10.123.24.4
  PING 10.123.24.4: 56  data bytes, press CTRL_C to break
    Reply from 10.123.24.4: bytes=56 Sequence=1 ttl=255 time=170 ms

  --- 10.123.24.4 ping statistics ---
    1 packet(s) transmitted
    1 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 170/170/170 ms
<R3>ping -c 1 10.123.34.4
  PING 10.123.34.4: 56  data bytes, press CTRL_C to break
    Reply from 10.123.34.4: bytes=56 Sequence=1 ttl=255 time=40 ms

  --- 10.123.34.4 ping statistics ---
    1 packet(s) transmitted
    1 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 40/40/40 ms

image-20230410112441013

配置ospf

R1、R2、R3、R4使用Loopback0接口地址作为Router ID,在各个设备的互联接口、Loopback0接口激活OSPF。

[R1-ospf-1-area-0.0.0.0]dis this
[V200R003C00]
#
 area 0.0.0.0 
  network 10.0.1.1 0.0.0.0 
  network 10.123.12.1 0.0.0.0 
#
return
[R2-ospf-1-area-0.0.0.0]dis this
[V200R003C00]
#
 area 0.0.0.0 
  network 10.0.2.2 0.0.0.0 
  network 10.123.12.2 0.0.0.0 
  network 10.123.23.2 0.0.0.0 
  network 10.123.24.2 0.0.0.0 
#
return
[R3-ospf-1-area-0.0.0.0]dis this
[V200R003C00]
#
 area 0.0.0.0 
  network 10.0.3.3 0.0.0.0 
  network 10.123.23.3 0.0.0.0 
  network 10.123.34.3 0.0.0.0 
#
return
[R4-ospf-1-area-0.0.0.0]dis this
[V200R003C00]
#
 area 0.0.0.0 
  network 10.0.4.4 0.0.0.0 
  network 10.123.24.4 0.0.0.0 
  network 10.123.34.4 0.0.0.0 
#
return

查看R2、R3上的ospf邻居信息

image-20230410113725106

image-20230410113757602

查看R4的OSPF路由表

image-20230410113857122

可以看出来已经学到了全网路由

配置IBGP对等体

bgp 64511

image-20230410114443970

image-20230410114500289

image-20230410114516898

image-20230410114531857

在R2、R3上查看IBGP对等体状态

image-20230410114701393

image-20230410114728849

AS内的IBGP对等体关系成功建立

配置路由反射器

[R2]bgp 64511
[R2-bgp]peer 10.123.12.1 reflect-client
[R3]bgp 64511
[R3-bgp]peer 10.123.23.2 reflect-client
[R4]bgp 64511
[R4-bgp]peer 10.123.34.3 reflect-client

在本步骤中,我们将在R2上发布BGP路由10.2.2.0/24,并观察该路由依次经路由反射器R3、R4反射后,被通告回R2从而引发潜在路由环路风险的情况。

缺省情况下,R2发布BGP路由后,该路由将被R2直接通告给R4,另一方面也会通过R3反射给R4,此时R4将优选R2直接通告过来的路由,从而不会再将R3反射过来的路由再反射回给R2。为此,我们需要在R2上部署路由策略,使R2不直接向R4通告10.2.2.0/24路由。

配置路由策略

image-20230410115158256

image-20230410115302144

//在BGP中调用路由策略
[R2]bgp 64511
[R2-bgp]peer 10.123.24.4 route-policy bgp export
//在R2上发布路由
[R2]bgp 64511
[R2-bgp] network 10.2.2.0 24

在R2、R3上查看BGP路由10.2.2.0/24信息

image-20230410115815185

image-20230410115959089

在R4上查看BGP路由10.2.2.0/24的信息

image-20230410120335552

//让R4重新发送Update报文
<R2>refresh bgp 10.123.24.4 import

查看R2上Update报文收发数量

image-20230410120458239

验证Cluster_List实现路由防环

image-20230410120651696

验证Cluster_List实现路由防环

取消R2上的BGP路由发布

[R2]bgp 64511
[R2-bgp] undo network 10.2.2.0 24

一次查看R1、R2、R3、R4上BGP路由的10.1.1.0/24的信息

R1为BGP路由10.1.1.0/24的始发者,R1将路由通告给了R2(10.0.12.2)

image-20230410120651696.png

来自路由反射器客户端R1的BGP路由10.1.1.0/24,R2将其反射给了R3(10.0.23.3)

来自路由反射器客户端R2的BGP路由10.1.1.0/24,R2反射时添加了Cluster_List属性,值为10.0.2.2,R3*将该条路由反射给了R4(10.0.34.4)

来自路由反射器客户端R3的BGP路由10.1.1.0/24,R3反射时添加了Cluster_List属性的值,当前值为10.0.3.3,10.0.2.2,R4将该条路由反射给了R2(10.0.24.2)

再次查看R2的BGP路由表

04182048.png

在R2上查看BGP对等体10.123.24.4的详细信息

04182049.png

R2从R4收到了1个Update报文,未向R4发送Update报文(路由策略限制),但是本地BGP路由表中没有R4通告的BGP路由10.1.1.0/24。

在R2上触发入方向的软复位,让R4重新发送Update报文

<R2>refresh bgp 10.123.24.4 import 
<R2>display bgp peer 10.123.24.4 verbose | in Update
 Update-group ID: 1
 Update messages 2
 Update messages 0

接收的Update报文数量增加,R2从R4收到了BGP路由10.1.1.0/24的通告。

再次查看R2上BGP路由10.1.1.0 24的明细信息

04182052.png

依旧只有来自R1通告的1条BGP路由,R4通告的BGP路由其Cluster_List属性值中包含了R2的Cluster-ID,R2忽略了该路由通告。

]]>
0 https://xiongan.host/index.php/archives/199/#comments https://xiongan.host/index.php/feed/tag/%E8%B7%AF%E7%94%B1%E5%99%A8/
【OpenDaylight】及Postman实现流表下发 https://xiongan.host/index.php/archives/198/ https://xiongan.host/index.php/archives/198/ Fri, 14 Apr 2023 00:25:00 +0800 admin 安装OVS
主机名ip角色
ovs192.168.123.10ovs

首先连接SSH

用finalshell连接,需要提前配置好ip和网卡

上传ovs源文件,并解压

68120158273

进入目录,执行./configure,生成Makefile文件

68120164422

然后进入编译安装

make
make install

68120167841

实验六-OpenDaylight及Postman实现流表下发

使用Opendaylight虚拟机

安装jdk1.8,并启动opendaylight

68120286124

安装组件:

68120391184

首先清理旧数据

DELETE http://127.0.0.1:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/

image-20230413235336190

然后CLI命令行里再次清理

sudo mn -c

生成拓扑并连接 OpenDaylight

sudo mn --topo=single,3 --controller=remote,ip=本机ip,port=6633 --switch ovsk,protocols=OpenFlow13

68120401669

68120403714

使用 Postman 填入 JSON 格式的 http 请求

image-20230413235939496

image-20230413235900248

//以下内容是Body中需要填写的
{
    "flow": [
         {
             "id": "1",
             "match": {
                 "in-port": "1",
                 "ethernet-match": {
                     "ethernet-type": {
                         "type": "0x0800"
                     }
                 },
                 "ipv4-destination": "10.0.0.3/32"
             },
             "instructions": {
                 "instruction": [
                     {
                         "order": "0",
                         "apply-actions": {
                             "action": [
                                 {
                                     "order": "0",
                                     "drop-action": {}
                                 }
                             ]
                         }
                     }
                 ]
             },
             "flow-name": "flow1",
             "priority": "65535",
             "hard-timeout": "5", //此处需要修改间隔,意味着h1 ping h3 有5秒时间是中断的
             "cookie": "2",
             "table_id": "0"
         }
     ]
 }

现在CLI中h1 ping h3,再去PUT数据链接

测试成功,结果符合预期

image-20230414000211597

鸣谢:小桂哥,King

]]>
0 https://xiongan.host/index.php/archives/198/#comments https://xiongan.host/index.php/feed/tag/%E8%B7%AF%E7%94%B1%E5%99%A8/
【BGP】路由器反射器 https://xiongan.host/index.php/archives/197/ https://xiongan.host/index.php/archives/197/ Mon, 10 Apr 2023 14:12:28 +0800 admin BGP路由反射器

image-20230410111903473

各接口和环回口ip地址如上图

//R2上新添加一个loopback1
ip add 10.2.2.2 24

在R2、R3路由器上测试连通性

<R2>ping -c 1 10.123.12.1
  PING 10.123.12.1: 56  data bytes, press CTRL_C to break
    Reply from 10.123.12.1: bytes=56 Sequence=1 ttl=255 time=220 ms

  --- 10.123.12.1 ping statistics ---
    1 packet(s) transmitted
    1 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 220/220/220 ms

<R2>ping -c 1 10.123.23.3
  PING 10.123.23.3: 56  data bytes, press CTRL_C to break
    Reply from 10.123.23.3: bytes=56 Sequence=1 ttl=255 time=100 ms

  --- 10.123.23.3 ping statistics ---
    1 packet(s) transmitted
    1 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 100/100/100 ms

<R2>ping -c 1 10.123.24.4
  PING 10.123.24.4: 56  data bytes, press CTRL_C to break
    Reply from 10.123.24.4: bytes=56 Sequence=1 ttl=255 time=170 ms

  --- 10.123.24.4 ping statistics ---
    1 packet(s) transmitted
    1 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 170/170/170 ms
<R3>ping -c 1 10.123.34.4
  PING 10.123.34.4: 56  data bytes, press CTRL_C to break
    Reply from 10.123.34.4: bytes=56 Sequence=1 ttl=255 time=40 ms

  --- 10.123.34.4 ping statistics ---
    1 packet(s) transmitted
    1 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 40/40/40 ms

image-20230410112441013

配置ospf

R1、R2、R3、R4使用Loopback0接口地址作为Router ID,在各个设备的互联接口、Loopback0接口激活OSPF。

[R1-ospf-1-area-0.0.0.0]dis this
[V200R003C00]
#
 area 0.0.0.0 
  network 10.0.1.1 0.0.0.0 
  network 10.123.12.1 0.0.0.0 
#
return
[R2-ospf-1-area-0.0.0.0]dis this
[V200R003C00]
#
 area 0.0.0.0 
  network 10.0.2.2 0.0.0.0 
  network 10.123.12.2 0.0.0.0 
  network 10.123.23.2 0.0.0.0 
  network 10.123.24.2 0.0.0.0 
#
return
[R3-ospf-1-area-0.0.0.0]dis this
[V200R003C00]
#
 area 0.0.0.0 
  network 10.0.3.3 0.0.0.0 
  network 10.123.23.3 0.0.0.0 
  network 10.123.34.3 0.0.0.0 
#
return
[R4-ospf-1-area-0.0.0.0]dis this
[V200R003C00]
#
 area 0.0.0.0 
  network 10.0.4.4 0.0.0.0 
  network 10.123.24.4 0.0.0.0 
  network 10.123.34.4 0.0.0.0 
#
return

查看R2、R3上的ospf邻居信息

image-20230410113725106

image-20230410113757602

查看R4的OSPF路由表

image-20230410113857122

可以看出来已经学到了全网路由

配置IBGP对等体

bgp 64511

image-20230410114443970

image-20230410114500289

image-20230410114516898

image-20230410114531857

在R2、R3上查看IBGP对等体状态

image-20230410114701393

image-20230410114728849

AS内的IBGP对等体关系成功建立

配置路由反射器

[R2]bgp 64511
[R2-bgp]peer 10.123.12.1 reflect-client
[R3]bgp 64511
[R3-bgp]peer 10.123.23.2 reflect-client
[R4]bgp 64511
[R4-bgp]peer 10.123.34.3 reflect-client

在本步骤中,我们将在R2上发布BGP路由10.2.2.0/24,并观察该路由依次经路由反射器R3、R4反射后,被通告回R2从而引发潜在路由环路风险的情况。

缺省情况下,R2发布BGP路由后,该路由将被R2直接通告给R4,另一方面也会通过R3反射给R4,此时R4将优选R2直接通告过来的路由,从而不会再将R3反射过来的路由再反射回给R2。为此,我们需要在R2上部署路由策略,使R2不直接向R4通告10.2.2.0/24路由。

配置路由策略

image-20230410115158256

image-20230410115302144

//在BGP中调用路由策略
[R2]bgp 64511
[R2-bgp]peer 10.123.24.4 route-policy bgp export
//在R2上发布路由
[R2]bgp 64511
[R2-bgp] network 10.2.2.0 24

在R2、R3上查看BGP路由10.2.2.0/24信息

image-20230410115815185

image-20230410115959089

在R4上查看BGP路由10.2.2.0/24的信息

image-20230410120335552

//让R4重新发送Update报文
<R2>refresh bgp 10.123.24.4 import

查看R2上Update报文收发数量

image-20230410120458239

验证Cluster_List实现路由防环

取消R2上的BGP路由发布

[R2]bgp 64511
[R2-bgp] undo network 10.2.2.0 24

一次查看R1、R2、R3、R4上BGP路由的10.1.1.0/24的信息

R1为BGP路由10.1.1.0/24的始发者,R1将路由通告给了R2(10.0.12.2)

image-20230410120651696

来自路由反射器客户端R1的BGP路由10.1.1.0/24,R2将其反射给了R3(10.0.23.3)

来自路由反射器客户端R2的BGP路由10.1.1.0/24,R2反射时添加了Cluster_List属性,值为10.0.2.2,R3将该条路由反射给了R4(10.0.34.4)

来自路由反射器客户端R3的BGP路由10.1.1.0/24,R3反射时添加了Cluster_List属性的值,当前值为10.0.3.3,10.0.2.2,R4将该条路由反射给了R2(10.0.24.2)

再次查看R2的BGP路由表

image-20230410135732689

在R2上查看BGP对等体10.123.24.4的详细信息

image-20230410135901236

R2从R4收到了1个Update报文,未向R4发送Update报文(路由策略限制),但是本地BGP路由表中没有R4通告的BGP路由10.1.1.0/24。

在R2上触发入方向的软复位,让R4重新发送Update报文

<R2>refresh bgp 10.123.24.4 import 
<R2>display bgp peer 10.123.24.4 verbose | in Update
Update-group ID: 1
 Update messages 2
 Update messages 0

接收的Update报文数量增加,R2从R4收到了BGP路由10.1.1.0/24的通告。

再次查看R2上BGP路由10.1.1.0 24的明细信息

image-20230410140133692.png

依旧只有来自R1通告的1条BGP路由,R4通告的BGP路由其Cluster_List属性值中包含了R2的Cluster-ID,R2忽略了该路由通告。

]]>
0 https://xiongan.host/index.php/archives/197/#comments https://xiongan.host/index.php/feed/tag/%E8%B7%AF%E7%94%B1%E5%99%A8/
【ospf】路由排错 https://xiongan.host/index.php/archives/39/ https://xiongan.host/index.php/archives/39/ Sat, 08 Oct 2022 13:33:00 +0800 admin 案例要求:排除此路由拓扑中的错误,使得各路由器互相通(在一个区域内)
大致原因:路由器的区域和路由器接口的地址是否正常
常用命令:display ip routing-table (查看ip路由表)display ospf peer brief(查看ospf表)display this(查看当前表的详细信息)interface GigabitEthernet 0/0/0(进入路由器的端口)ip address ip 网关(为端口添加ip地址)undo 列表(删除)

  1. 先要查看哪些路由器可以通
    R4
    R3
    可以看出来R3、R4路由器在一个区域路由上
    R4
    R3
    R3
    R4
    ospf排错.zip
]]>
0 https://xiongan.host/index.php/archives/39/#comments https://xiongan.host/index.php/feed/tag/%E8%B7%AF%E7%94%B1%E5%99%A8/
华为ENSP配置一个静态路由【案例】 https://xiongan.host/index.php/archives/12/ https://xiongan.host/index.php/archives/12/ Tue, 27 Sep 2022 19:23:00 +0800 admin 静态路由AR配置

拓扑图
案例要求:需要不通网段的PC1与PC2、PC3主机分别ping通
准备:三台PC端主机、三台路由器(AR2220)
操作:

  1. 配置PC端网络信息
    PC1配置截图:
    PC1
    注意:配置静态路由无需选择DHCP分配,需要自己设置的,这里的网关即下列步骤中的AR1的GE0的串口端ip
    PC2、PC3的配置同理
  2. 配置路由器
    打开路由器AR1后配置:
    system-view #进入系统界面
    [Huawei]interface GigabitEthernet 0/0/0 # 进入G端口
    [Huawei-GigabitEthernet0/0/0]ip addr 10.123.1.1 24 # 配置G端口的IP地址和子网掩码
    [Huawei-GigabitEthernet0/0/0]quit # 返回上一界面
    [Huawei]interface GigabitEthernet 0/0/1
    [Huawei-GigabitEthernet0/0/1]ip addr 1.1.1.1 24
    [Huawei-GigabitEthernet0/0/1]quit
    [Huawei]ip route-static 20.123.1.0 24 1.1.1.2 # 配置添加静态路由信息,目标网络,掩码,下一跳
    [Huawei]interface GigabitEthernet 0/0/2 # 进入G端口
    [Huawei-GigabitEthernet0/0/2]ip addr 2.2.2.1 24 # 配置G端口的IP地址和子网掩码
    [Huawei-GigabitEthernet0/0/2]quit
    [Huawei] ip route-static 30.123.1.0 24 2.2.2.2
    查看路由表:
    AR1路由表
    其中static标识的就是咱们设置的静态地址路由
    配置AR2路由器:
    system-view
    [Huawei]interface GigabitEthernet 0/0/0
    [Huawei-GigabitEthernet0/0/0]ip addr 1.1.1.2 24
    [Huawei-GigabitEthernet0/0/0]quit
    [Huawei]interface GigabitEthernet 0/0/1
    [Huawei-GigabitEthernet0/0/1]ip addr 20.123.1.1 24
    [Huawei-GigabitEthernet0/0/1]quit
    [Huawei]ip route-static 10.123.1.0 30 1.1.1.1
    查看AR2路由表:
    AR2路由表
    配置AR3路由器:
    system-view
    [Huawei]interface GigabitEthernet 0/0/0
    [Huawei-GigabitEthernet0/0/0]ip addr 30.123.1.1 24
    [Huawei-GigabitEthernet0/0/0]quit
    [Huawei]interface GigabitEthernet 0/0/1
    [Huawei-GigabitEthernet0/0/1]ip addr 2.2.2.2 24
    [Huawei-GigabitEthernet0/0/1]quit
    [Huawei]ip route-static 10.123.1.0 30 2.2.2.1
    查看AR3路由表:
    AR3路由表
  3. 测试路由
    测试1
    测试2

交换机switch配置三台静态路由

Switch1:
#
sysname S1
#
vlan batch 10 40 50
#
interface Vlanif40
ip address 10.1.4.2 255.255.255.252
#
interface Vlanif50
ip address 10.1.4.5 255.255.255.252
#
interface Vlanif10
ip address 10.1.1.1 255.255.255.0
#
interface GigabitEthernet0/0/1
port link-type trunk
port trunk allow-pass vlan 10
#
interface GigabitEthernet0/0/2
port link-type trunk
port trunk allow-pass vlan 40
#
interface GigabitEthernet0/0/3
port link-type access
port default vlan 50
#
ip route-static 10.1.2.0 255.255.255.0 10.1.4.1
ip route-static 10.1.3.0 255.255.255.0 10.1.4.6
#
return
Switch2:
#
sysname S2
#
vlan batch 20 40
#
interface Vlanif40
ip address 10.1.4.1 255.255.255.252
#
interface Vlanif20
ip address 10.1.2.1 255.255.255.0
#
interface GigabitEthernet0/0/1
port link-type trunk
port trunk allow-pass vlan 40
#
interface GigabitEthernet0/0/2
port link-type access
port default vlan 20
#
ip route-static 0.0.0.0 0.0.0.0 10.1.4.2
#
return
Switch3:
#
sysname S3
#
vlan batch 30 50
#
interface Vlanif50
ip address 10.1.4.6 255.255.255.252
#
interface Vlanif30
ip address 10.1.3.1 255.255.255.0
#
interface GigabitEthernet0/0/1
port link-type trunk
port trunk allow-pass vlan 50
#
interface GigabitEthernet0/0/2
port link-type access
port default vlan 30
#
ip route-static 0.0.0.0 0.0.0.0 10.1.4.5
#
return

测试连通性(10.1.2.1 ping 10.1.3.1)

]]>
0 https://xiongan.host/index.php/archives/12/#comments https://xiongan.host/index.php/feed/tag/%E8%B7%AF%E7%94%B1%E5%99%A8/